New Lightweight Trinary Cryptographic Hash Function

The full article was originally published by Daniel De Michele on IOTA Hispano. Read the full article here.

Continuing with this great serie of announcements with which IOTA keeps surprising us, the most amazing was Troika. We are witnessing how the IOTA Foundation is working to perfect this protocol, that if everything goes well, we will see implemented in every device connected to the Internet of Things in just a couple of years.

Gabriela Jara
Content Coordinator & Writer
IOTA Hispano

If you like what we are doing help us to continue working!


But what am I talking about?

The IOTA Foundation and CYBERCRYPT have been working since November 2017 and a couple of days ago they gave us this great news, they announced the implementation of the new hash function Troika, developed by cryptographic experts. IOTA Foundation commissioned CYBERCRYPT to develop a secure hash function for IOTA’s trinary architecture and platform. This hash function, named Troika, was developed by CYBERCRYPT’s expert cryptographers, and will lay a strong cryptographic bases for the final IOTA protocol.

“The IOTA Foundation is honored and excited to be collaborating with CYBERCRYPT, to ensure we achieve world-leading security for the IOTA protocol. We hope that this competition will bring the cryptographic community together on solving security in the Internet-of-Things,” 

David Sønstebø, Co-Founder and Co-chair of IOTA Foundation.

Currently IOTA uses the relatively hardware intensive NIST standard SHA-3/Keccak for crucial operations for maximal security and Troika could enable more efficiency, which will be central in the IoT world.

In order for communication between devices to be effective in the IoT era, each connected device must support specific amounts of energy, especially the smaller ones which are limited by their energy restriction and have limited capabilities. The last years the companies linked to the area of IoT have been in the continuous search of new strategies to improve the computational performance of the devices, in view of the fact that Moore’s law would be coming to an end.

What does Moore’s Law say? INTEL co-founder Gordon Moore in 1965 stated that the technology had a future, that the number of transistors per unit area of integrated circuits doubled every year and that the trend would continue for the next 20 years from that statement. In 1975 he modified his own law by stating that the pace would slow down and that integration would not occur every 1 year, if not every 2 years approximately. This exponential growth progression, by doubling the capacity of the integrated circuits is what is called Moore’s Law. However, a few years later, Moore said in 2005 that his law would cease to be fulfilled in about 15 years from that date and that a new technology would come to replace the current one.

Why Ternary

The first modern, electronic ternary computer Setun was built in 1958 in the Soviet Union at the Moscow State University by Nikolay Brusentsov, and it had notable advantages over the binary computers which eventually replaced it, such as lower electricity consumption and lower production cost.

Read the full Article

The full article was originally published by Daniel De Michele on IOTA Hispano, where people are continuing the conversation by highlighting and responding to this story.

You might also like

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. AcceptRead More